

Journal of Organometallic Chemistry 530 (1997) 255-257

Preliminary communication

A stannaethene with a planar environment of the tricoordinated tin and carbon atoms ^{1,2}

Manfred Weidenbruch ^{a,*}, Hartmut Kilian ^a, Martin Stürmann ^a, Siegfried Pohl ^a, Wolfgang Saak ^a, Heinrich Marsmann ^b, Dirk Steiner ^c, Armin Berndt ^{* c}

^a Fachbereich Chemie, Universität Oldenburg, Carl-von-Ossietzky-Straße 9–11, D-26111 Oldenburg, Germany
 ^b Fachbereich Chemie, Universität (GH) Paderborn, Warburger Straße 100, D-33095 Paderborn, Germany
 ^c Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany

Received 11 July 1996

Abstract

Addition of the diarylstannylene R''_2 Sn (R'' = 2-^tBu-4,5,6-Me₃C₆H) to the cryptodiborylcarbene (Me₃Si)₂C(B^tBu)₂C furnishes the stannaethene (Me₃Si)₂C(B^tBu)₂C=SnR''_2 (10). The X-ray structure analysis of 10 reveals a strictly planar environment of the tricoordinated tin and carbon atoms and a slight twisting of the Sn=C double bond.

Keywords: Tin; Stannaethene; Carbene; Stannylene

1. Introduction

Compounds with a tin/carbon double bond are still extremely rare [2]. Besides 1, the sole known stannaethene for which the structure has been confirmed [3], merely the molecules 2 [4] and 3 [5] have been reported, although the former can only be isolated as the adduct with diethyl ether or THF. Other compounds with tricoordinated tin atoms can better be described as Lewis acid-base adducts on account of their geometries and large Sn-C bond lengths of approximately 230-240 pm, which are markedly longer than the corresponding single bond lengths. Examples of such compounds are products of the type 4, prepared from the reaction of a nucleophilic carbene with tin(II) chloride [6] or a diaryl-

* Corresponding authors.

We now report on the synthesis and unequivocal characterization of a further, genuine stannaethene exhibiting both similarities and pronounced differences in comparison with 1.

 $R = 2,4,6-iPr_3C_6H_2$, $R' = 2,4,6-(CF_3)_3C_6H_2$

5

stannylene [7], and 5 [8], obtained from the reaction of a

stable diarylstannylene with an isocyanide.

¹ Dedicated to Professor Peter Sartori on the occasion of his 65th birthday.

² Compounds of Germanium and Tin, Part XIX. For Part XVIII see Ref. [1].

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. *Pll* S0022-328X(96)06666-1

Table 1

2. Results and discussion

We recently isolated the distannene 6 which is characterized by a large Sn-Sn bond length and an unsymmetrical environment of the two tin atoms [9]. Compound 6 is stable in the solid state, while in solution the black crystals of 6 decompose to give the stannylene molecules 7. Treatment of 7 with the non-classical boriranylideneborane 8 [10], which behaves like the electrophilic carbene 9 in reactions of this type, leads smoothly to the stannaethene 10.

The differences in NMR data between 1 and 10 are not large. The chemical shifts of the boron atoms $[\delta(^{11}B) = 63]$ and the Sn=C carbon atom $[\delta(^{13}C) =$ 137] in 10 are in the same regions as the shifts determined for the corresponding atoms in 1. However, the ¹¹⁹Sn NMR spectrum $[\delta(^{119}Sn) = 374]$ does reveal a⁵ significantly lower deshielding than is the case for the tin atom in 1 $[\delta(^{119}Sn) = 835]$. The higher shielding of the tin nucleus in 10 in comparison with that in 1 is presumably attributable mainly to the aryl groups, since the tin atoms in the tetraaryldistannene R₂Sn=SnR₂, where R = 2,4,6-¹Pr₃C₆H₂, also exhibit a chemical shift of only approximately 400 ppm [11].

An X-ray crystal structure analysis of 10 (Fig. 1,

Fig. 1. Molecular structure of 10 in the crystal (hydrogen atoms omitted).

Selected bond lengths (pm) and angles (°) (standard deviations) for 10

$\overline{\text{Sn}-\text{C}(1)}$	203.2(5)	Sn-C(17)	218.9(5)
Sn-C(30)	217.3(5)	C(1)–B(1)	150.2(8)
C(1)-B(2)	151.0(8)	B(1) - C(2)	165.1(8)
B(2)–C(2)	163.4(8)		
C(1)-Sn-C(17)	119.1(3)	C(1)-Sn-C(30)	122.2(2)
C(17)-Sn-C(30)	118.5(2)	Sn - C(1) - B(1)	137.1(4)
Sn-C(1)-B(2)	135.9(2)	B(1)-C(1)-B(2)	86.7(4)
C(1)-B(1)-C(2)	97.2(4)	C(1)-B(2)-C(2)	97.7(4)
B(1)-C(2)-B(2)	78.0(4)	Si(1)-C(2)-Si(2)	115.3(3)

Table 1) also reveals some similarities with 1, while at the same time clearly showing some major differences between the two stannaethenes. The Sn=C bond length of 203.2 pm is considerably shortened in comparison with the normal single bond length, and corresponds approximately to the bond length in 1. Conspicuous in both stannaethenes is the fact that the bonds from C(1) to the two boron atoms are about 14 pm shorter than the bonds from the boron atoms to carbon C(2). This is indicative of a considerable ylidic character of the C(1)-B bonds, and thus of a charge separation of the type $\rangle C - Sn \langle .$

However, the tin atom in the stannaethene 1 exhibits only a slight and the Sn=C carbon atom a pronounced pyramidalization, the corresponding two atoms in 10 have planar environments with angular sums of 359.7° and 359.8° . Compound 10 is thus the first stannaethene to approach the planarity theoretically deduced for the parent compound H₂Sn=CH₂ [12–14]. Accordingly, the torsion of the double bond, which amounts to 61° in 1, is markedly less in 10 with an average twist angle of 36° .

3. Experimental section

3.1. General procedures

All reactions were carried out in oven-dried glassware under an atmosphere of dry argon. The ¹H and ¹³C NMR spectra were recorded on a Bruker AM 300 spectrometer, whereas the ¹¹B, ²⁹Si and ¹¹⁹Sn NMR spectra were recorded on a Bruker AMX 300 spectrometer using C_6D_6 or toluene- d_8 as solvents. Mass spectra were obtained with a Varian-MAT 212 instrument. The UV-vis spectrum was recorded on a Shimadzu UV 260 spectrometer.

3.2. Synthesis of the stannaethene $(Me_3Si)_2$ $C('BuB)_2 C = SnR''$ (10)

A solution of 0.26 g (0.55 mmol) of the stannylene 7 in 20 ml of *n*-hexane was added dropwise to a solution

of 0.17 g (0.55 mmol) of the cryptocarbene 8 in 10 ml of n-hexane over a period of 30 min. The mixture was stirred at room temperature for 2h and the solvent removed. Recrystallization of the residue from 10 ml of n-pentane at 4°C yielded 0.18g (42%) of the stannaethene 10: yellow rectangular crystals, m.p. 152-155 °C (decomp.). ¹H NMR (C_6D_6): δ 0.56 (s, 18H, Si-CH₃), 1.09 (s, 18H, ^tBuB), 1.32 (s, 18H, ^tBu), 1.88 (s, 6H, CH₃), 1.96 (s, 6H, CH₃), 2.87 (s, 6H, CH₃), (s, oh, Ch₃), 1.96 (s, oh, Ch₃), 2.87 (s, oh, Ch₃), 7.11 (s, 2H). ¹³C NMR (C₆D₆): δ 5.79 (C_p), 15.92 (C_p), 21.04 (C_p), 27.89 (C_p), 31.13 (C_p), 33.04 (C_p), 35.93 (C_q), 134.88 (C_q), 139.21 (C_q), 140.39 (C_q), 148.76 (C_q), 152.15 (C_q). C_p and C_q refer to primary and quaternary carbon atoms. The carbon atoms of the four-membered ring, which are omitted from this list, were observed in toluene- d_8 solution at -40° C as broad signals at 37 (CSiMe₃) and 137 (C=Sn). ¹¹B NMR (C₆D₆): δ 63 (broad). ²⁹Si NMR (C₆D₆): δ -7.73. ¹¹⁹Sn NMR (C₆D₆): δ 374.2. MS (CI, isobutane): m/z 776 (M⁺, 3), 762 (MH⁺ – CH₃, 35). UV– vis: λ_{max} 284 nm (broad, tailing off into the visible region). Compound 10 was too sensitive against air and moisture for a satisfactory elemental analysis to be obtained.

3.3. X-ray structure analysis of 10

Empirical formula $C_{42} H_{74} B_2 Si_2 Sn$, molar mass 775.50 g mol⁻¹, a = 968.30(10), b = 1300.60(10), c = 1859.7(2) pm, $\alpha = 94.260(10)$, $\beta = 96.570(10)$, $\gamma = 102.940(10)^\circ$, $V = 2255.5(4) \times 10^6$ pm³, Z = 2, $D_{calc} = 1.142$ g cm⁻¹. Crystal system triclinic, space group *P*1, crystal size $0.23 \times 0.23 \times 0.19$ mm³, $2\theta_{max}$ 46°, number of reflections 8184, number of unique reflections 6251, number of reflections $I > 2\sigma(I)$ 4517, linear absorption coefficient 0.645 mm⁻¹, number of parameters 424, $R(I > 2\sigma(I))$ 0.051, wR_2 (all data) 0.1106.

Data collection was performed at room temperature on a Siemens-Stoe AED 2 diffractometer using graphite monochromated Mo K α radiation. The structure was solved by direct phase determination using the SHELXS 86 program system and refined by full-matrix leastsquares techniques using the SHELXL 93 program system [15]. Hydrogen atoms were placed in calculated positions, and all other atoms were refined anisotropically.

Further details of the crystal structure investigation

may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany, upon quoting the depository number CSD-405489.

Acknowledgements

Financial support of this work from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- M. Weidenbruch, A. Hagedorn, K. Peters and H.G. von Schnering, *Chem. Ber.*, 129 (1996) 401.
- M. Driess and H. Grützmacher, Angew. Chem., 108 (1996) 900; Angew. Chem., Int. Ed. Engl., 35 (1996) 827; J. Escudié, C. Couret, H. Ranaivonjatova, G. Anselm, G. Delpon-Lacaze, M.-A. Chaubon, A. Kandri-Rodi and J. Satgé, Main Group. Met. Chem., 17 (1994) 33.
- [3] H. Meyer, G. Baum, W. Massa, S. Berger and A. Berndt, Angew. Chem., 99 (1987) 559; Angew. Chem., Int. Ed. Engl., 26 (1987) 546.
- [4] A. Berndt, H. Meyer, G. Baum, W. Massa and S. Berger, *Pure Appl. Chem.*, 59 (1987) 1011.
- [5] G. Anselm, H. Ranaivonjatova, J. Escudié, C. Couret and J. Satgé, Organometallics, 11 (1992) 2748.
- [6] N. Kuhn, T. Kratz, D. Bläser and R. Boese, Chem. Ber., 128 (1995) 245.
- [7] A. Schäfer, M. Weidenbruch, W. Saak and S. Pohl, J. Chem. Soc., Chem. Commun., (1995) 1157.
- [8] H. Grützmacher, S. Freitag, R. Herbst-Irmer, G.M. Sheldrick, Angew. Chem., 104 (1992) 459; Angew. Chem., Int. Ed. Engl., 31 (1992) 437.
- [9] M. Weidenbruch, H. Kilian, K. Peters, H.G. von Schnering and H. Marsmann, *Chem. Ber.*, 128 (1995) 983.
- [10] H. Klusik and A. Berndt, Angew. Chem., 95 (1983) 895; Angew. Chem., Int. Ed. Engl., 22 (1983) 877; P.H.M. Budzelaar, P. von R. Schleyer and K. Krogh-Jespersen, Angew. Chem., 96 (1984) 809; Angew. Chem., Int. Ed. Engl., 23 (1984) 825; A. Berndt, Angew. Chem., 105 (1993) 1034; Angew. Chem., Int. Ed. Engl., 32 (1993) 985.
- [11] S. Masamune and L. Sita, J. Am. Chem. Soc., 107 (1985) 6390;
 M. Weidenbruch, A. Schäfer, H. Kilian, S. Pohl, W. Saak and
 H. Marsmann, Chem. Ber., 125 (1992) 563.
- [12] K.D. Dobbs and J.W. Hehre, Organometallics, 5 (1986) 2057.
- [13] T.L. Windus and M.S. Gordon, J. Am. Chem. Soc., 114 (1992) 9559.
- [14] H. Jacobsen and T. Ziegler, J. Am. Chem. Soc., 116 (1994) 3667.
- [15] G.M. Sheldrick, SHELXL 93, University of Göttingen, Germany.